4.6 Article

On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-015-7782-y

关键词

Finite element method; Small-hole drilling; 3D numerical simulation; AISI 1045

资金

  1. National Key Projects of Science and Technology of China [2012ZX04003051-3]

向作者/读者索取更多资源

This paper studies the three-dimensional finite element (FE) modeling for simulating the small-hole drilling process of AISI 1045 by using FE package Abaqus/Explicit. The large deformation of work and the chip formation in drilling process is realized by incorporating Johnson-Cook material constitutive model and material failure criterion. In order to verify the simulation model, the simulation and corresponding drilling tests are performed for the drilling process with 3-mm diameter solid carbide drills at several combination groups of rotational speeds and feed velocities. The estimated thrust force, torque and chip morphology from the simulation are in good agreement with those tested from experiments. The combination of both simulations and experiments not only reveals obvious varying pattern of thrust force, torque with the increasing of rotational speeds and feed velocities, which is consistent with the cutting theory, but also provides a more detailed and profound knowledge about the cutting mechanism including the contribution of chisel edge, drilling stage, and stress and strain distribution, which is assumed to be helpful for the optimization of the drill structure, geometry and drilling parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据