4.7 Article

Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT

期刊

AGING CELL
卷 12, 期 6, 页码 1062-1072

出版社

WILEY-BLACKWELL
DOI: 10.1111/acel.12135

关键词

deacetylation; diabetes; miR-34a; resveratrol; sirtuins; steatosis

资金

  1. Korean Health 21 R&D Project, Ministry of Health and Welfare [A102065]
  2. MRC [2012-051426]
  3. National Institutes of Health [DK62777, DK95842]
  4. American Diabetes Association

向作者/读者索取更多资源

SIRT1 is an NAD(+)-dependent deacetylase that is implicated in prevention of many age-related diseases including metabolic disorders. As SIRT1 deacetylase activity is dependent on NAD(+) levels and the development of compounds that directly activate SIRT1 has been controversial, indirectly activating SIRT1 through enhancing NAD(+) bioavailability has received increasing attention. NAD(+) levels are reduced in obesity and the aged, but the underlying mechanisms remain unclear. We recently showed that hepatic microRNA-34a (miR-34a), which is elevated in obesity, directly targets and decreases SIRT1 expression. Here, we further show that miR-34a reduces NAD(+) levels and SIRT1 activity by targeting NAMPT, the rate-limiting enzyme for NAD(+) biosynthesis. A functional binding site for miR-34a is present in the 3 UTR of NAMPT mRNA. Hepatic overexpression of miR-34a reduced NAMPT/NAD(+) levels, increased acetylation of the SIRT1 target transcriptional regulators, PGC-1, SREBP-1c, FXR, and NF-B, and resulted in obesity-mimetic outcomes. The decreased NAMPT/NAD(+) levels were independent of miR-34a effects on SIRT1 levels as they were also observed in SIRT1 liver-specific knockout mice. Further, the miR-34a-mediated decreases were reversed by treatment with the NAD(+) intermediate, nicotinamide mononucleotide. Conversely, antagonism of miR-34a in diet-induced obese mice restored NAMPT/NAD(+) levels and alleviated steatosis, inflammation, and glucose intolerance. Anti-miR-34a-mediated increases in NAD(+) levels were attenuated when NAMPT was downregulated. Our findings reveal a novel function of miR-34a in reducing both SIRT1 expression and activity in obesity. The miR-34a/NAMPT axis presents a potential target for treating obesity- and aging-related diseases involving SIRT1 dysfunction like steatosis and type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据