4.7 Review

Mitochondrially encoded cysteine predicts animal lifespan

期刊

AGING CELL
卷 7, 期 1, 页码 32-46

出版社

WILEY
DOI: 10.1111/j.1474-9726.2007.00349.x

关键词

evolution; lifespan; mitochondria; oxidative stress; protein oxidation; respiration

向作者/读者索取更多资源

The role of genetic factors in the determination of lifespan is undisputed. However, numerous successful efforts to identify individual genetic modulators of longevity have not yielded yet a quantitative measure to estimate the lifespan of a species from scratch, merely based on its genomic constitution. Here, we report on a meta-examination of genome sequences from 248 animal species with known maximum lifespan, including mammals, birds, fish, insects, and helminths. Our analysis reveals that the frequency with which cysteine is encoded by mitochondrial DNA is a specific and phylogenetically ubiquitous molecular indicator of aerobic longevity: long-lived species synthesize respiratory chain complexes which are depleted of cysteine. Cysteine depletion was also found on a proteome-wide scale in aerobic versus anaerobic bacteria, archaea, and unicellular eukaryotes; in mitochondrial versus hydrogenosomal sequences; and in the mitochondria of free-living, aerobic versus anaerobic-parasitic worms. The association of longevity with mitochondrial cysteine depletion persisted after correction for body mass and phylogenetic interdependence, but it was uncoupled in helminthic species with predominantly anaerobic lifestyle. We conclude that protein-coding genes on mitochondrial DNA constitute a quantitative trait locus for aerobic longevity, wherein the oxidation of mitochondrially translated cysteine mediates the coupling of trait and locus. These results provide distinct support for the free radical theory of aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据