4.6 Review

Density ripples in expanding low-dimensional gases as a probe of correlations

期刊

PHYSICAL REVIEW A
卷 80, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.80.033604

关键词

-

资金

  1. Austrian Science Fund (FWF) [Z 118] Funding Source: researchfish
  2. Austrian Science Fund (FWF) [W1210] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

We investigate theoretically the evolution of the two-point density correlation function of a low-dimensional ultracold Bose gas after release from a tight transverse confinement. In the course of expansion thermal and quantum fluctuations present in the trapped systems transform into density fluctuations. For the case of free ballistic expansion relevant to current experiments, we present simple analytical relations between the spectrum of density ripples and the correlation functions of the original confined systems. We analyze several physical regimes, including weakly and strongly interacting one-dimensional (1D) Bose gases and two-dimensional (2D) Bose gases below the Berezinskii-Kosterlitz-Thouless (BKT) transition. For weakly interacting 1D Bose gases, we obtain an explicit analytical expression for the spectrum of density ripples which can be used for thermometry. For 2D Bose gases below the BKT transition, we show that for sufficiently long expansion times the spectrum of the density ripples has a self-similar shape controlled only by the exponent of the first-order correlation function. This exponent can be extracted by analyzing the evolution of the spectrum of density ripples as a function of the expansion time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据