4.2 Article

Preferential fluid flow pathways in embankment dams imaged by self-potential tomography

期刊

NEAR SURFACE GEOPHYSICS
卷 7, 期 5-6, 页码 447-462

出版社

WILEY
DOI: 10.3997/1873-0604.2009012

关键词

-

资金

  1. CNRS (The French National Research Council)
  2. ANR
  3. French National Program 'Ecosphere Continentale'
  4. INSU-CNRS
  5. EDF

向作者/读者索取更多资源

We invert self-potential data in order to locate anomalous water flow pathways in dams and embankments and to estimate the seepage velocity. The inversion of the self-potential data is performed using the modified singular value decomposition for the inverse problem using a linear formulation of the forward problem. The kernel is solved numerically accounting for the topography of the system and the resistivity distribution, which is independently obtained through electrical resistance tomography. A prior constraint based on finite element modelling of ground water flow can also be used to provide a prior source current density model if needed. This self-potential tomography approach is first validated with a synthetic case study showing how the position of a preferential fluid flow pathway can be retrieved from self-potential and resistivity data and how the seepage velocity can be obtained inside one order of magnitude. This methodology is then applied to a test site corresponding to a portion of an embankment dam along the Rhone River in France. Two self-potential maps (with 1169 and 2076 measurements, respectively) and four resistivity tomograms are used to locate a leak. One self-potential profile and one resistivity profile are used together to perform the 2D inversion of the self-potential data to locate the anomalous leakage at depth and to estimate the flow rate. The depth at which the preferential fluid flow pathway is located, according to self-potential tomography, agrees with an independent geotechnical test using the Permeafor. This demonstrates the usefulness of this methodology to detect preferential water channels inside the body of a dam.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据