4.6 Article

Design optimization of mechanical properties of ceramic tool material during turning of ultra-high-strength steel 300M with AHP and CRITIC method

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-015-7903-7

关键词

Optimization; Mechanical properties; Ceramic tool; Ultra-high-strength steel 300M; AHP; Critic

资金

  1. National Natural Science Foundation of China [51475273]

向作者/读者索取更多资源

Design optimization of mechanical properties is one of the most challenging tasks in the design and development of new tool materials for diverse machining applications. Mechanical properties of tool material play a crucial role during the entire tool design and machining process. This paper attempts to solve the optimization problem of mechanical properties for Al2O3-based ceramic tool material in turning of ultra-high-strength steel 300M. First, a high-speed turning experiment was conducted to explore the effect of various mechanical properties of ceramic tool materials on tool life, and then an exponential model was built to decompose the tool life for obtaining the best comprehensive mechanical properties of ceramic tools. Second, analytic hierarchy process (AHP) method combined with Criteria Importance Through Intercriteria Correlation (CRITIC) method was used to optimize the mechanical properties of ceramic tool materials. The optimization results of hardness, fracture toughness, flexural strength, and Young's modulus were 21.3 GPa, 8.9 MPa center dot m(1/2), 898.6 MPa, and 473.5 GPa, respectively. Finally, under the guidance of optimization results, Al2O3/TiC/TiN ceramic tool (AT10N20) materials were fabricated to turning of ultra-high-strength steel 300M. The cutting performance and wear mechanisms of ceramic tool AT10N20 were investigated. The experimental results indicated that the design optimization method could be useful for designing and developing new tool materials in specific machining applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据