4.6 Article

Multi-scale computational homogenization-localization for propagating discontinuities using X-FEM

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.4838

关键词

multi-scale; computational homogenization; localization; damage; fracture; X-FEM

向作者/读者索取更多资源

The aim of this paper is to propose a continuous-discontinuous computational homogenization-localization framework to upscale microscale localization toward the onset and propagation of a cohesive discontinuity at the macroscale. The major novelty of this contribution is the development of a fully coupled micromacro solution strategy, where the solution procedure for the macroscopic domain is based on the extended finite element method. The proposed approach departs from classical computational homogenization, which allows to derive the effective stress-strain response before the onset of localization. Upon strain localization, the microscale is characterized by a strain localization band where damage grows and by two adjacent unloading bulk regions at each side of the localization zone. The microscale localization band is lumped into a macroscopic cohesive crack, accommodated through discontinuity enriched macroscale kinematics. The governing response of the continuum with a discontinuity is obtained numerically based on proper scale transition relations in terms of the traction-separation law and the stress-strain description of the continuous surrounding material at both sides of the discontinuity. The potential of the method is demonstrated with a numerical example, which illustrates the onset and propagation of a macroscale cohesive crack emerging from microstructural damage within the underlying microstructure. Copyright (C) 2015 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据