4.5 Article

Evolution of Ultrafine Particle Size Distributions Following Indoor Episodic Releases: Relative Importance of Coagulation, Deposition and Ventilation

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 46, 期 5, 页码 494-503

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2011.639317

关键词

-

资金

  1. National Institute of Standards and Technology (NIST) through a US Intergovernmental Personal Act
  2. Basic Science Research program [2011-0014558]
  3. World Class University (WCU) through the National Research Foundation of Korea (NRF) [R31-10049]
  4. Ministry of Education, Science and Technology

向作者/读者索取更多资源

Indoor ultrafine particles (UFP,<100 nm) undergo aerosol processes such as coagulation and deposition, which alter UFP size distribution and accordingly the level of exposure to UFP of different sizes. This study investigates the decay of indoor UFP originated from five different sources: a gas stove and an electric stove, a candle, a hair dryer, and power tools in a residential test building. An indoor aerosol model was developed to investigate differential effects of coagulation, deposition, and ventilation. The coagulation model includes Brownian, van der Waals, and viscosity forces, and also fractal geometry for particles of >24 nm. The model was parameterized using different values of the Hamaker constant for predicting the coagulation rate. Deposition was determined for two different conditions: central fan on versus central fan off. For the case of a central fan running, deposition rates were measured by using a nonlinear solution to the mass balance equation for the whole building. For the central fan off case, an empirical model was used to estimate deposition rates. Ventilation was measured continuously using an automated tracer gas injection and sampling system. The study results show that coagulation is a significant aerosol process for UFP dynamics and the primary cause for the shift of particle size distribution following an episodic high-concentration UFP release with no fans operating. However, with the central mechanical fan on, UFP deposition loss is substantial and comparable to the coagulation loss. These results suggest that coagulation should be considered during high concentration periods (>20,000 cm(-3)), while particle deposition should be treated as a major loss mechanism when air recirculates through ductwork or mechanical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据