4.5 Article

Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 44, 期 6, 页码 473-483

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786821003749525

关键词

-

资金

  1. National Heart, Lung, and Blood Institute [R21HL094991]
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R21HL094991] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Increasing the size of nanoaerosols may be beneficial in a number of applications, including filtration, particle size selection, and targeted respiratory drug delivery. A potential method to increase particle or droplet size is enhanced condensational growth (ECG), which involves combining the aerosol with saturated or supersaturated air. In this study, we characterize the ECG process in a model tubular geometry as a function of initial aerosol size (mean diameters-150, 560, and 900 nm) and relative humidity conditions using both in vitro experiments and numerical modeling. Relative humidities (99.8-104%) and temperatures (25-39 degrees C) were evaluated that can safely be applied to either targeted respiratory drug delivery or personal aerosol filtration systems. For inlet saturated air temperatures above ambient conditions (30 and 39 degrees C), the initial nanoaerosols grew to a size range of 1000-3000 nm (1-3 [image omitted]m) over a time period of 0.2 s. The numerical model results were generally consistent with the experimental findings and predicted final to initial diameter ratios of up to 8 after 0.2 s of humidity exposure and 14 at 1 s. Based on these observations, a respiratory drug delivery approach is suggested in which nanoaerosols in the size range of 500 nm are delivered in conjunction with a saturated or supersaturated air stream. The initial nanoaerosol size will ensure minimal deposition and loss in the mouth-throat region while condensational growth in the respiratory tract can be used to ensure maximal lung retention and to potentially target the site of deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据