4.3 Article

Predicting low-velocity impact damage in composites by a quasi-static load model with cohesive interface elements

期刊

AERONAUTICAL JOURNAL
卷 116, 期 1186, 页码 1367-1381

出版社

ROYAL AERONAUTICAL SOC
DOI: 10.1017/S0001924000007685

关键词

-

资金

  1. China AVIC
  2. China Scholarship Council

向作者/读者索取更多资源

A numerical model is developed for predicting low-velocity impact damage in laminated composites. Stacked shell elements are employed to model laminate plies with discrete interface elements in pre-determined zones to model the onset and propagation of matrix cracks and delamination. These interface elements are governed by a bi-linear cohesive failure law. Cohesive element zone size is determined by a separate finite element analysis using solid elements to identify the stress concentration sites. In order to save the computational effort, low-velocity impact load is modelled by quasi-static loading. Influence of contact force induced friction on shear driven mode II delamination is modelled by a friction model. For a clustered cross-ply laminate, calculated impact force and damage area are in good agreement with the test results. It is shown that matrix cracks should be included in the model in order to simulate delamination in adjacent interface. The practical outcome of this research is a validated modelling approach that can be further improved for predicting low-velocity impact damage in other stacking sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据