4.7 Article

A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling

期刊

ADVANCES IN WATER RESOURCES
卷 53, 期 -, 页码 109-117

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2012.10.001

关键词

Integrated hydrologic modeling; Parallel computing; Solvers

向作者/读者索取更多资源

A terrain-following grid formulation (TFG) is presented for simulation of coupled variably-saturated subsurface and surface water flow. The TFG is introduced into the integrated hydrologic model, ParFlow, which uses an implicit, Newton Krylov solution technique. The analytical Jacobian is also formulated and presented and both the diagonal and non-symmetric terms are used to precondition the Krylov linear system. The new formulation is verified against an orthogonal stencil and is shown to provide increased accuracy at lower lateral spatial discretization for hillslope simulations. Using TFG, efficient scaling to a large number of processors (16,384) and a large domain size (8.1 Billion unknowns) is shown. This demonstrates the applicability of this formulation to high-resolution, large-spatial extent hydrology applications where topographic effects are important. Furthermore, cases where the analytical Jacobian is used for the Newton iteration and as a non-symmetric preconditioner for the linear system are shown to have faster computation times and better scaling. This demonstrates the importance of solver efficiency in parallel scaling through the use of an appropriate preconditioner. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据