4.8 Article

High-Resolution Patterning of Hydrogels in Three Dimensions using Direct-Write Photofabrication for Cell Guidance

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 19, 期 22, 页码 3543-3551

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200901115

关键词

-

资金

  1. NSF [0829166]
  2. Texas Advanced Research Program [003658-0273-2007]
  3. Welch Foundation [F-1331]
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [0829166] Funding Source: National Science Foundation

向作者/读者索取更多资源

The development of three-dimensional, spatially defined neuronal cultures that mimic chemical and physical attributes of native tissue is of considerable interest for various applications, including the development of tailored neuronal networks and clinical repair of damaged nerves. Here, the use of multiphoton excitation to photocrosslink protein microstructures within three-dimensional, optically transparent hydrogel materials, such as those based on hyaluronic acid, is reported. Multiphoton excitation confines photocrosslinking to a three-dimensional voxel with submicron spatial resolution, enabling fabrication of protein matrices with low- to sub-micrometer feature sizes by scanning the focus of a laser relative to the reagent solution. These methods can be used to create complex three-dimensional architectures that provide both chemical and topographical cues for cell culture and guidance, providing for the first time a means to direct cell adhesion and migration on size scales relevant to in vivo environments. Using this approach, guidance of both dorsal root ganglion cells (DRGs) and hippocampal neural progenitor cells (NPCs) along arbitrary, three-dimensional paths is demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据