4.6 Article

Heliotropic dust rings for Earth climate engineering

期刊

ADVANCES IN SPACE RESEARCH
卷 51, 期 7, 页码 1132-1144

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2012.10.024

关键词

Geoengineering; Earth ring; Solar radiation pressure; Earth oblateness

资金

  1. European Research Council [227571]
  2. European Research Council (ERC) [227571] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J(2) oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J(2) effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J(2) effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 x 10(12) kg of material is computed as the total mass required to offset the effects of global warming. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据