4.6 Article

An improved approach to model ionospheric delays for single-frequency Precise Point Positioning

期刊

ADVANCES IN SPACE RESEARCH
卷 49, 期 12, 页码 1698-1708

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2012.03.016

关键词

Precise Point Positioning; Low-cost single-frequency receiver; Ionospheric delay correction; Ionospheric delay representation

资金

  1. China 863 program [2012AA12A202]
  2. National Natural Science Foundation of China [40904007]

向作者/读者索取更多资源

PPP with low-cost, single-frequency receivers has been receiving increasing interest in recent years because of its large amount of possible users. One crucial issue in single-frequency PPP is the mitigation of ionospheric delays which cannot be removed by combining observations on different frequencies. For this purpose, several approaches have been developed, such as, the approach using ionospheric model corrections with proper weight, the GRAPHIC (Group and Phase Ionosphere Calibration) approach, and the method to model ionospheric delays over a station with a low polynomial or stochastic process. From our investigation on the stochastic characteristics of the ionospheric delay over a station, it cannot be precisely represented by either a deterministic model in the form of a low-order polynomial or a stochastic process for each satellite, because of its strong irregular spatial and temporal variations. Therefore, a novel approach is developed accordingly in which the deterministic representation is further refined by a stochastic process for each satellite with an empirical model for its power density. Furthermore, ionospheric delay corrections from a constructed model using GNSS data are also included as pseudo-observations for a better solution. A large data set collected from about 200 IGS stations over one month in 2010 is processed with the new approach and several commonly adopted approaches for validation. The results show its significant improvements in terms of positioning accuracy and convergence time with a negligible extra processing time, which is also demonstrated by data collected with a low-cost, handheld, single-frequency receiver. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据