4.2 Article

Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics

期刊

ADVANCES IN PHYSIOLOGY EDUCATION
卷 35, 期 4, 页码 427-437

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/advan.00034.2011

关键词

ventricular fibrillation; atrial fibrillation; graphics processing unit simulations

资金

  1. National Science Foundation [CCF-0926190, CCF-1018459]
  2. Air Force Office of Scientific Research [FA0550-09-1-0481]

向作者/读者索取更多资源

Bartocci E, Singh R, von Stein FB, Amedome A, Caceres AJ, Castillo J, Closser E, Deards G, Goltsev A, Ines RS, Isbilir C, Marc JK, Moore D, Pardi D, Sadhu S, Sanchez S, Sharma P, Singh A, Rogers J, Wolinetz A, Grosso-Applewhite T, Zhao K, Filipski AB, Gilmour RF Jr, Grosu R, Glimm J, Smolka SA, Cherry EM, Clarke EM, Griffeth N, Fenton FH. Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Adv Physiol Educ 35: 427-437, 2011; doi:10.1152/advan.00034.2011.-As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York1 collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据