4.7 Article

Homogenization methods for interface modeling in damaged masonry

期刊

ADVANCES IN ENGINEERING SOFTWARE
卷 46, 期 1, 页码 35-42

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.advengsoft.2010.09.009

关键词

Masonry structure; Interface damage; Homogenization; Asymptotic analysis; Finite element method; Damage evalution

向作者/读者索取更多资源

The aim of the present study was to reproduce damage in masonry by combining structural analysis and homogenization methods. In the case of a masonry structure composed of bricks and mortar, a third material is assumed to exist, which is a mixture of the two materials sandwiched between the other two. This new layer has a small thickness, a low stiffness and a given damage ratio. The mechanical problem set by this masonry, which was initially a 3-D problem, is solved numerically in 2-D terms using finite element methods and modeling the three materials: brick, mortar and the interface material defined above. The properties of the third material are obtained by performing the following three steps: (i) Firstly an exact homogenization of a brick/mortar laminate defining a first homogeneous equivalent medium (HEM-1) is performed. (ii) Secondly, we assume the HEM-1 to be damaged and apply the Kachanov model to assess the global behavior of the damaged HEM-1, thus defining a second equivalent homogeneous medium denoted HEM-2. (iii) Thirdly, an asymptotic analysis is performed to model HEM-2 as an interface or a joint. The properties of this joint are deduced from those of the HEM-2 material. This interface is modeled numerically with connector finite elements. This method is applied to two cases: a triplet of full bricks and a triplet of hollow bricks both subjected to shear loading. The numerical results obtained are compared with experimental data available in the literature. (C) 2010 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据