4.7 Article

Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2015.06.013

关键词

Artificial neural network; Nanofluids; Dynamic viscosity; Thermal conductivity

向作者/读者索取更多资源

This paper focuses on designing an artificial neural network which can predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluids from input experimental data including temperature, diameter of particles, and solid volume fraction. The experimental data were extracted and they were used as learning dataset to train the neural network. To find a proper architecture for network, an iteration method was used. Based on the results, there was no over-fitting in designed neural network and the neural network was able to track the data. ANN outputs showed that the maximum errors in predicting thermal conductivity and dynamic viscosity are 2% and 2.5%, respectively. Based on the ANN outputs, two sets of correlations for estimating the thermal conductivity and dynamic viscosity were presented. The comparisons between experimental data and the proposed correlations showed that the presented correlations were in an excellent agreement with experimental data. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据