4.7 Article

Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications

期刊

ADVANCES IN COLLOID AND INTERFACE SCIENCE
卷 175, 期 -, 页码 25-38

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cis.2012.03.006

关键词

Porous silicon; Surface modification; Surface chemistry; Drug loading; Drug delivery

向作者/读者索取更多资源

Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native SiySiHx. terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug-pSi interactions, pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi-drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different psi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据