4.7 Article

Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique

期刊

ADVANCES IN COLLOID AND INTERFACE SCIENCE
卷 179, 期 -, 页码 85-98

出版社

ELSEVIER
DOI: 10.1016/j.cis.2012.06.005

关键词

Surface forces; Polyelectrolytes; Dendrimers; Water-solid interface; Latex particles; Atomic force microscopy; Direct force measurements

资金

  1. University of South Australia
  2. Swiss National Science Foundation
  3. University of Geneva
  4. Swiss Federal Office for Education and Science
  5. COST Action [D43]

向作者/读者索取更多资源

Direct force measurements are used to obtain a comprehensive picture of interaction forces acting between charged colloidal particles in the presence of oppositely, charged polyelectrolytes. These measurements are achieved by the multi-particle colloidal probe technique based on the atomic force microscope (AFM). This novel extension of the classical colloidal probe technique offers three main advantages. First, the technique works in a colloidal suspension with a huge internal surface area of several square meters, which simplifies the precise dosing of the small amounts of the polyelectrolytes needed and makes this approach less sensitive to impurities. Second, the particles are attached in-situ within the fluid cell, which avoids the formation of nanobubbles on the latex particles used. Third, forces between two similar particles from the same batch are being measured, which allows an unambiguous determination of the surface potential due to the symmetry of the system. Based on such direct force measurements involving positively and negatively charged latex particles and different polyelectrolytes, we find the following forces to be relevant. Repulsive electrostatic double-layer forces and attractive van der Waals forces as described by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) are both important in these systems, whereby the electrostatic forces dominate away from the isoelectric point (IEP), while at this point they vanish. Additional non-DLVO attractive forces are operational, and they have been identified to originate from the electrostatic interactions between the patch-charge heterogeneities of the adsorbed polyelectrolyte films. Highly charged polyelectrolytes induce strong patch-charge attractions, which become especially important at low ionic strengths and high molecular mass. More weakly charged polyelectrolytes seem to form more homogeneous films, whereby patch-charge attractions may become negligible. Individual bridging events could be only rarely identified from the retraction part of the force profiles, and therefore we conclude that bridging forces are unimportant in these systems. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据