4.1 Article

Dark Energy and Its Implications for Gravity

期刊

ADVANCED SCIENCE LETTERS
卷 2, 期 2, 页码 174-183

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/asl.2009.1024

关键词

-

向作者/读者索取更多资源

The cosmological constant is the most economical candidate for dark energy. No other approach really alleviates the difficulties faced by the cosmological constant because, in all other attempts to model the dark energy, one still has to explain why the bulk cosmological constant (treated as a low-energy parameter in the action principle) is zero. I argue that the until the theory is made invariant under the shifting of the Lagrangian by a constant, one cannot obtain a satisfactory solution to the cosmological constant problem. This is impossible in any generally covariant theory with the conventional low-energy matter action, if the metric is varied in the action to obtain the field equations. I review an alternative perspective in which gravity arises as an emergent, long wavelength phenomenon, and can be described in terms of an effective theory using an action associated with null vectors in the spacetime. This action is explicitly invariant under the shift of the energy momentum tensor T-ab -> T-ab + Lambda g(ab) and any bulk cosmological constant can be gauged away. Such an approach seems to be necessary for addressing the cosmological constant problem and can easily explain why its bulk value is zero. I describe some possibilities for obtaining the observed value from quantum gravitational fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据