4.7 Article

Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics

期刊

ADVANCED POWDER TECHNOLOGY
卷 25, 期 3, 页码 916-925

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apt.2014.01.021

关键词

Superfine pulverized coal particle; Chemical property; Free radical; Electron paramagnetic resonance; Deconvolution of multi-component spectra

资金

  1. National Natural Science Foundation of China [51306116, 51376131]
  2. China Postdoctoral Science Foundation [2012M511091]

向作者/读者索取更多资源

Superfine pulverized coal combustion is a new pulverized coal combustion technology with lots of advantages. A mechanochemical effect exists during the comminution process, which changes the chemical properties of coal significantly. Free radical concentrations and certain functional groups would increase with the decrease of particle sizes. In this paper, we combined electron paramagnetic resonance (EPR) and C-13 solid-state nuclear magnetic resonance (NMR) techniques to study the free radical characteristics of superfine pulverized coal thoroughly. The final results indicate that the EPR spectra of coal are the superimpositions of several lines induced by different paramagnetic centers, which can be fitted by 1 Gaussian and 3 Lorentzian lines. The influences of coal maturities and particle sizes on EPR parameters, such as g-values, linewidths, and spin concentrations, are analyzed in detail. It is shown that with the decrease of particle sizes, more free radicals are induced through bond cleavages. Mechanical forces initiate the accumulation of free radicals in the fractures and inner pore surfaces of coal. Furthermore, the influence of particle sizes on oxygen-containing radicals (i.e., Lorentzian 1 types) is the greatest. This work provides a primary picture of the occurrence modes and spatial distributions of free radicals in superfine pulverized coal. The findings will help form the basis and provide guidance for further studies on revealing the correlations between the free radical reaction pathways and NOx formation mechanisms. (C) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据