4.8 Article

Control of Domain Structures in Multiferroic Thin Films through Defect Engineering

期刊

ADVANCED MATERIALS
卷 30, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201802737

关键词

defects; domain control; ferroelectrics; multiferroics

资金

  1. Department of Energy (DOE) [DE-SC0014430]
  2. National Science Foundation (NSF) [DMR-1420620, DMR-1506535]
  3. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [FG0207ER46417]
  4. National Science Foundation [OCI0821527, ECCS-1542081]
  5. National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) [EEC-1160504]
  6. NSF MRSEC program [DMR-1719875]

向作者/读者索取更多资源

Domain walls (DWs) have become an essential component in nanodevices based on ferroic thin films. The domain configuration and DW stability, however, are strongly dependent on the boundary conditions of thin films, which make it difficult to create complex ordered patterns of DWs. Here, it is shown that novel domain structures, that are otherwise unfavorable under the natural boundary conditions, can be realized by utilizing engineered nanosized structural defects as building blocks for reconfiguring DW patterns. It is directly observed that an array of charged defects, which are located within a monolayer thickness, can be intentionally introduced by slightly changing substrate temperature during the growth of multiferroic BiFeO3 thin films. These defects are strongly coupled to the domain structures in the pretemperature-change portion of the BiFeO3 film and can effectively change the configuration of newly grown domains due to the interaction between the polarization and the defects. Thus, two types of domain patterns are integrated into a single film without breaking the DW periodicity. The potential use of these defects for building complex patterns of conductive DWs is also demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据