4.8 Article

Thermally Induced 2D Alloy-Heterostructure Transformation in Quaternary Alloys

期刊

ADVANCED MATERIALS
卷 30, 期 45, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201804218

关键词

alloys; density functional theory; heterostructures; phase diagrams; phase stability; scanning transmission electron microscopy

资金

  1. FAME, one of six centers of STARnet
  2. FAME, one of six centers of STARnet, a Semiconductor Research Corporation program - MARCO
  3. FAME, one of six centers of STARnet, a Semiconductor Research Corporation program - DARPA
  4. Air Force Office of Scientific Research [FA9550-18-1-0072]
  5. SERB India-Ramanujan Fellowship
  6. U.S. DOE [DE-SC0012547]
  7. R. Welch Foundation [C-1590]

向作者/读者索取更多资源

Composition and phase specific 2D transition metal dichalogenides (2D TMDs) with a controlled electronic and chemical structure are essential for future electronics. While alloying allows bandgap tunability, heterostructure formation creates atomically sharp electronic junctions. Herein, the formation of lateral heterostructures from quaternary 2D TMD alloys, by thermal annealing, is demonstrated. Phase separation is observed through photoluminescence and Raman spectroscopy, and the sharp interface of the lateral heterostructure is examined via scanning transmission electron microscopy. The composition-dependent transformation is caused by existence of miscibility gap in the quaternary alloys. The phase diagram displaying the miscibility gap is obtained from the reciprocal solution model based on density functional theory and verified experimentally. The experiments show direct evidence of composition-driven heterostructure formation in 2D atomic layer systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据