4.8 Article

Large Intercalation Pseudocapacitance in 2D VO2 (B): Breaking through the Kinetic Barrier

期刊

ADVANCED MATERIALS
卷 30, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201803594

关键词

2D; intercalation; kinetic barrier; pseudocapacitance; ultrathin

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

VO2 (B) features two lithiation/delithiation processes, one of which is kinetically facile and has been commonly observed at 2.5 V versus Li/Li+ in various VO2 (B) structures. In contrast, the other process, which occurs at 2.1 V versus Li/Li+, has only been observed at elevated temperatures due to large interaction energy barrier and extremely sluggish kinetics. Here, it is demonstrated that a rational design of atomically thin, 2D nanostructures of VO2 (B) greatly lowers the interaction energy and Li+-diffusion barrier. Consequently, the kinetically sluggish step is successfully enabled to proceed at room temperature for the first time ever. The atomically thin 2D VO2 (B) exhibits fast charge storage kinetics and enables fully reversible uptake and removal of Li ions from VO2 (B) lattice without a phase change, resulting in exceptionally high performance. This work presents an effective strategy to speed up intrinsically sluggish processes in non-van der Waals layered materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据