4.8 Article

Recent Advances in Organic One-Dimensional Composite Materials: Design, Construction, and Photonic Elements for Information Processing

期刊

ADVANCED MATERIALS
卷 25, 期 27, 页码 3627-3638

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201300325

关键词

nanophotonics; organic nanomaterials; heterojunctions; information processing

资金

  1. National Natural Science Foundation of China [21125315, 91022022, 51203165]
  2. Chinese Academy of Sciences
  3. Ministry of Science and Technology of China [2012YQ120060]
  4. Ministry of Science and Technology of China (National Basic Research 973 Program)

向作者/读者索取更多资源

Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据