4.7 Article

Stars quenching stars: how photoionization by local sources regulates gas cooling and galaxy formation

期刊

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1745-3933.2010.00806.x

关键词

atomic processes; plasmas; cooling flows; galaxies: formation

资金

  1. STFC [ST/G00269X/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [ST/G00269X/1] Funding Source: researchfish

向作者/读者索取更多资源

Current models of galaxy formation lack an efficient and physically constrained mechanism to regulate star formation (SF) in low and intermediate mass galaxies. We argue that the missing ingredient could be the effect of photoionization by local sources on the gas cooling. We show that the soft X-ray and EUV flux generated by SF is able to efficiently remove the main coolants (e.g. He+, O4+ and Fe8+) from the halo gas via direct photoionization. As a consequence, the cooling and accretion time of the gas surrounding star-forming galaxies may increase by one or two orders of magnitude. For a given halo mass and redshift, the effect is directly related to the value of the star formation rate (SFR). Our results suggest that the existence of a critical SFR above which 'cold' mode accretion is stopped, even for haloes with M(vir) well below the critical shock-heating mass suggested by previous studies. The evolution of the critical SFR with redshift, for a given halo mass, resembles the respective steep evolution of the observed SFR for z < 1. This suggests that photoionization by local sources would be able to regulate gas accretion and SF, without the need for additional, strong feedback processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据