4.8 Article

Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 37, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201801389

关键词

immunogenic cell death; macrophage; magnetic resonance imaging; myeloid-derived suppressor cell; photothermal therapy

资金

  1. National Natural Science Foundation of China (NFSC) [81672668, 81472528, 81472529]
  2. Fundamental Research Funds for the Central Universities [2042017kf0171]
  3. National Natural Science Foundation for Outstanding Youth Foundation [61722405]

向作者/读者索取更多资源

A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid-derived suppressor cell (MDSC) membrane-coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor-targeting, magnetic resonance imaging, and photothermal therapy (PTT)-induced tumor killing. Compared with red blood cell membrane-coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor-targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into smart agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据