4.8 Article

Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 43, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201804343

关键词

biomedical applications; cell manipulation; drug delivery; magnetic control; micromotors

资金

  1. project Advanced Functional Nanorobots - European Federation for Research in Rehabilitation (EFRR) [CZ.02.1.01/0.0/0.0/15_003/0000444]
  2. Czech Science Foundation [GACR16-18917S]
  3. Neuron Foundation

向作者/读者索取更多资源

Autonomous self-propelled micromachines, taking energy from surrounding environment and converting it to their motion, are on the forefront of the research for smart materials in the recent years. Owing to their self-propulsion mechanism, they have demonstrated to be more efficient drug carriers than passive particles. Here, multifunctional superparamagnetic/catalytic microrobots (PM/Pt microrobots) for cell manipulation, anticancer drug loading, and delivery to breast cancer cells are presented. These PM/Pt microrobots are fabricated from superparamagnetic polymer particles with iron oxide in their interior and an external tosylated surface, which is half-covered by a catalytic platinum (Pt) layer. This result in a triple-functionality-tosyl group-rich polymer layer can bind molecules and biological materials, Pt layer can catalyze decomposition of hydrogen peroxide, providing propulsion to the microrobots and magnetic part allows for manipulation by magnetic field. PM/Pt microrobots are able to move as individual robots and to team-up under influence of weak magnetic field by forming chains of the micromachines to perform collective actions, such as capture and transportation of cancer cells. The efficacy of PM/Pt microrobots to perform several tasks without complex surface functionalization steps simplifies the applicability of such multifunctional devices toward diverse biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据