4.8 Article

Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 24, 期 33, 页码 5291-5298

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201400888

关键词

-

资金

  1. MOE, Korea, under the National Research Foundation of Korea (NRF) [2012R1A2005977]
  2. MSIP, Korea, under the Convergence Information Technology Research Center (C-ITRC) [NIPA-2013-H0301-13-1009]
  3. MOTIE, Korea, under Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) [20112020100110/KIER B4-2462]

向作者/读者索取更多资源

Germanium (Ge) possesses a great potential as a high-capacity anode material for lithium ion batteries but suffers from its poor capacity retention and rate capability due to significant volume expansion by lithiation. Here, a facile synthetic route is introduced for producing nanometer-sized Ge crystallites interconnected by carbon (GEC) via thermal decomposition of a Ge-citrate complex followed by a calcination process in an inert atmosphere. The GEC electrode shows outstanding electrochemical performance, i.e., an almost 98.8% capacity retention of 1232 mAh g(-1), even after 1000 cycles at the rate of C/2. Importantly, a high discharge capacity of 880 mAh g(-1) is maintained at the very high rate of 10 C. The excellent anode performance of GEC stems from both effective buffering of carbon anchored to the Ge nanocrystals and the high open porosity of the GEC aggregated powder with an average pore diameter of 32 nm. Furthermore, the interfacial layer formed between Ge and carbon plays an essential role in prolonging the cycle life. The GEC electrode can be successfully employed as an anode for next generation lithium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据