4.8 Article

Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 24, 期 42, 页码 6640-6646

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201401755

关键词

single layer graphene; wear; friction; tribology; MD Simulations

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

During the last few years, graphene's unusual friction and wear properties have been demonstrated at nano to micro scales but its industrial tribological potential has not been fully realized. The macroscopic wear resistance of one atom thick graphene coating is reported by subjecting it to pin-on-disc type wear testing against most commonly used steel against steel tribo-pair. It is shown that when tested in hydrogen, a single layer of graphene on steel can last for 6400 sliding cycles, while few-layer graphene (3-4 layers) lasts for 47 000 cycles. Furthermore, these graphene layers are shown to completely cease wear despite the severe sliding conditions including high contact pressures (approximate to 0.5 GPa) observed typically in macroscale wear tests. The computational simulations show that the extraordinary wear performance originates from hydrogen passivation of the dangling bonds in a ruptured graphene, leading to significant stability and longer lifetime of the graphene protection layer. Also, the electronic properties of these graphene sheets are theoretically evaluated and the improved wear resistance is demonstrated to preserve the electronic properties of graphene and to have significant potential for flexible electronics. The findings demonstrate that tuning the atomistic scale chemical interactions holds the promise of realizing extraordinary tribological properties of monolayer graphene coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据