4.8 Article

Mesostructured Arrays of Nanometer-spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 24, 期 17, 页码 2544-2552

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201303724

关键词

mesostructures; arrayed nanoparticles; SERS; hot spots; GISAXS

资金

  1. National Science Council [NSC-98-2113-M-029-006-MY2, NSC 102-2112-M-213-005-MY3]

向作者/读者索取更多资源

A novel one-trough synthesis via an air-water interface is demonstrated to provide hexagonally packed arrays of densely spaced metallic nanoparticles (NPs). In the synthesis, a mesostructured polyoxometalate (POM)-silicatropic template (PSS) is first self-assembled at the air-water interface; upon UV irradiation, anion exchange cycles enable the free-floating PSS film to continuously uptake gold precursors from the solution subphase for diffusion-controlled and POM-site-directed photoreduction inside the silica channels. NPs approximate to 2 nm can hence be homogeneously formed inside the silica-surfactant channels until saturation. As revealed via X-ray diffraction, small-angle X-ray scattering (SAXS), grazing incidence SAXS, and transmission electron microscopy, the Au NPs directed by the PSS template are arrayed into a 2D hexagonal lattice with inter-channel spacing of 3.2 nm and a mean along-channel NP spacing of 2.8 nm. This corresponds to an ultra-high number density (approximate to 10(19) NPs cm(-3)) of narrowly spaced Au NPs in the Au-NP@PSS composite, leading to 3D densely deployed hot-spots along and across the mesostructured POM-silica channels for surface-enhanced Raman scattering (SERS). Consequently, the Au-NP@PSS composite exhibits prominent SERS with 4-mercaptobenzoic acid (4-MBA) adsorbed onto Au NPs. The best 4-MBA detection limit is 5 nm, with corresponding SERS enhancement factors above 10(8).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据