4.8 Article

Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 24, 期 36, 页码 5762-5770

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201400828

关键词

tissue engineering; cell alignment; substrate stiffness anisotropy; stem cells; differentiation; woven collagen scaffolds

资金

  1. National Science Foundation [DMR-1306665]
  2. National Institute of Health [R01 AR063701]
  3. AO Foundation

向作者/读者索取更多资源

A novel biofabrication modality, electrophoretic compaction with macromolecular alignment, is utilized to make collagen threads that mimic the native tendon's structure and mechanical properties. A device with kinematic electrodes is designed to fabricate collagen threads in continuous length. For the first time, a 3D-biotextile is woven purely from collagen. Mechanical properties and load-displacement behavior of the biotextile mimic those of the native tendon while presenting a porosity of 80%. The open pore network facilitates cell seeding across the continuum of the bioscaffold. Mesenchymal stem cells (MSCs) seeded in the woven scaffold undergo tenogenic differentiation in the absence of growth factors and synthesize a matrix that is positive for tenomodulin, COMP and type I collagen. Up-regulation of tenomodulin, a tendon specific marker, is 11.6 +/- 3.5 fold, COMP is up-regulated 16.7 +/- 5.5 fold, and Col I is up-regulated 6.9 +/- 2.7 fold greater on ELAC threads when compared to randomly oriented collagen gels. These results demonstrate that a bioscaffold woven using collagen threads with densely compacted and anisotropically aligned substrate texture stimulates tenogenesis topographically, rendering the electrochemically aligned collagen as a promising candidate for functional repair of tendons and ligaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据