4.8 Article

Autonomous Self-Healing of Epoxy Thermosets with Thiol-Isocyanate Chemistry

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 24, 期 35, 页码 5575-5583

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201400580

关键词

-

资金

  1. Agency for Innovation through Science and Technology (IWT)
  2. Belgian State, Prime Minister's office [P7/05]
  3. European Science Foundation - Precision Polymer Materials (P2M) program

向作者/读者索取更多资源

Thiol-isocyanate chemistry, combined with a dual capsule strategy, is used for the development of extrinsic self-healing epoxy materials. It is shown that the amine groups present in the matrix both serve as a catalyst for the addition reaction between a thiol and an isocyanate and as a way to covalently link the healed network structure to the surrounding resin. The tapered double cantilever beam (TDCB) geometry is used for evaluating the recovery of the fracture toughness at room temperature after different healing times. Using manual injection of the healing agents into the crack, a healing efficiency up to 130% is obtained for the EPIKOTE 828/DETA epoxy material. On the other hand, when two types of microcapsules, one containing a tetrathiol reagent and the other a low toxic isocyanate reagent, are incorporated into this epoxy thermoset (20 wt%), a recovery of more than 50% is reached. The influence of parameters such as the amount and core content of the microcapsules on the healing efficiency is investigated. Furthermore, the thiol-isocyanate chemistry is also tested for an industrial cold-curing epoxy resin (RIM 135/RIMH 137).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据