4.8 Article

Dipole-Dipole and H-Bonding Interactions Significantly Enhance the Multifaceted Mechanical Properties of Thermoresponsive Shape Memory Hydrogels

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 3, 页码 471-480

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201401989

关键词

-

资金

  1. National Natural Science Foundation of China [51173129, 21274105]
  2. National Natural Science Funds for Distinguished Young Scholar [51325305]
  3. Tianjin Municipal Natural Science Foundation [13ZCZDSY00900]

向作者/读者索取更多资源

High strength hydrogels were previously constructed based on dipole-dipole and hydrogen bonding reinforcement. In spite of the high tensile and compressive strengths achieved, the fracture energy of the hydrogels strengthened with sole noncovalent bondings was rather low due to the lack in energy dissipating mechanism. In this study, combined dipole-dipole and hydrogen bonding interactions reinforced (DHIR) hydrogels are synthesized by one-step copolymerization of three feature monomers, namely acrylonitrile (AN, dipole monomer), acrylamide (AAm, H-bonding monomer), and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS, anionic monomer) in the presence of PEGDA575, a hydrophilic crosslinker. The electrostatic repulsion from PAMPS allows the gel network to absorb water readily, and meanwhile the synergistic effect of dipole-dipole and H-bonding interactions enable the DHIR hydrogel to withstand up to 8.3 MPa tensile stress, 4.8 MPa compressive stress and 140-716% elongation at break with the fracture energy reaching as high as 5500 J/m(2). In addition, this DHIR hydrogel exhibits reversible mechanical properties after undergoing cyclic loading and unloading. Interestingly, the DHIR hydrogels with appropriate compositions demonstrate temperature-tunable mechanical properties as well as accompanied shape memory effect. The dual noncovalent bonding strengthening mechanism reported here offers a universal strategy for significantly enhancing the comprehensive mechanical properties of hydrogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据