4.8 Article

Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 23, 期 36, 页码 4577-4584

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201300418

关键词

condensation; post array; patterned wettability; superhydrophobic

资金

  1. ARPA-E [DE-AR0000326]
  2. National Science Foundation [ECS-0335765]
  3. US Department of Homeland Security (DHS)
  4. DHS
  5. DOE [DE-AC05-06OR23100]

向作者/读者索取更多资源

Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据