4.8 Article

Investigating the Role of Emissive Layer Architecture on the Exciton Recombination Zone in Organic Light-Emitting Devices

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 23, 期 41, 页码 5190-5198

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201300101

关键词

organic semiconductors; organic light-emitting devices; OLEDs; excitons; exciton recombination

资金

  1. National Science Foundation (NSF) MRSEC Program [DMR-0819885]
  2. University of Minnesota Initiative for Renewable Energy and the Environment
  3. NSF through the MRSEC program

向作者/读者索取更多资源

An experimental approach to determine the spatial extent and location of the exciton recombination zone in an organic light-emitting device (OLED) is demonstrated. This technique is applicable to a wide variety of OLED structures and is used to examine OLEDs which have a double- (D-EML), mixed- (M-EML), or graded-emissive layer (G-EML) architecture. The location of exciton recombination in an OLED is an important design parameter, as the local optical field sensed by the exciton greatly determines the efficiency and angular distribution of far-field light extraction. The spatial extent of exciton recombination is an important parameter that can strongly impact exciton quenching and OLED efficiency, particularly under high excitation. A direct measurement of the exciton density profile is achieved through the inclusion of a thin, exciton sensitizing strip in the OLED emissive layer which locally quenches guest excitons and whose position in the emissive layer can be translated across the device to probe exciton formation. In the case of the G-EML device architecture, an electronic model is developed to predict the location and extent of the exciton density profile by considering the drift, diffusion, and recombination of charge carriers within the device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据