4.8 Article

Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 22, 期 21, 页码 4539-4546

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201201436

关键词

imidazole microcapsules; composite membranes; fuel cells; water retention; proton transfer

资金

  1. National Science Fund for Distinguished Young Scholars [21125627]
  2. National High Technology Research and Development Program of China [2012AA03A611]
  3. Program of Introducing Talents of Discipline to Universities [B06006]

向作者/读者索取更多资源

Design and fabrication of hierarchically structured membranes with high proton conductivity is crucial to many energy-relevant applications including proton exchange membrane fuel cell (PEMFC). Here, a series of imidazole microcapsules (IMCs) with tunable imidazole group loading, shell thickness, and lumen size are synthesized and incorporated into a sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. The IMCs play two roles: i) Improving water retention properties of the membrane. The IMCs, similar to the vacuoles in plant cells, can render membrane a stable water environment. The lumen of the IMCs acts as a water reservoir and the shell of IMCs can manipulate water release. ii) They form anhydrous proton transfer pathways and low energy barrier pathways for proton hopping, imparting an enhanced proton transfer via either a vehicle mechanism or Grotthuss mechanism. In particular, at the relative humidity (RH) as low as 20%, the composite membrane exhibits an ultralow proton conductivity decline and the proton conductivity is one to two orders of magnitude higher than that of SPEEK control membrane. The enhanced proton conductivity affords the composite membrane an elevated peak power density from 69.5 to 104.5 mW cm(-2) in a single cell. Moreover, the application potential of the composite membrane for CO2 capture is explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据