4.8 Article

Direct Threat of a UV-Ozone Treated Indium-Tin-Oxide Substrate to the Stabilities of Common Organic Semiconductors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 23, 期 13, 页码 1718-1723

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201202120

关键词

indium tin oxide; organic photovoltaic devices; ultraviolet-ozone treatment; fullerene; degradation

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [T23-713/11]

向作者/读者索取更多资源

Ultraviolet-ozone treated indium-tin-oxide (UV-ITO) glass substrates have been widely and unquestioningly used in the field of organic electronics to improve both device performance and stability. Evidence is presented here for rapid decay of common organic films such as N,N-bis(naphthalen-1- yl)-N,N-bis(phenyl)-benzidine (NPB), tris(8-hydroxy-quinolinato)aluminum (Alq3), and rubrene when they are in contact with an UV-ITO substrate. While the photoluminescence (PL) of these organic films deposited on an UV-ITO substrate decay rapidly under illumination; those on quartz substrates are comparatively much more stable. Results from X-ray and UV photoemission spectroscopies (XPS and UPS) further suggest that degradations of the rubrene films on UV-ITO substrate are mainly attributed to active oxygen species generated upon UV-ozone treatment. These reactive oxygen species on the UV-ITO surface behave as a reservoir of oxygen that interacts with rubrene and shifts its highest occupied molecular orbital (HOMO) level away from the Fermi level. This interaction induces a gap-state in the energy gap of rubrene, which acts as a charge recombination center. More importantly, enhanced stabilities of rubrene-based organic photovoltaic (OPV) devices are demonstrated when they are fabricated on gold-coated or trifluoromethane (CHF3) plasma-treated ITO. The presented works shows that the commonly used UV-ITO substrate is a threat to the stability of addlayer organic semiconducting films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据