4.8 Article

Mussel Inspired Dynamic Cross-Linking of Self-Healing Peptide Nanofiber Network

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 23, 期 16, 页码 2081-2090

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201202291

关键词

-

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [110M353]
  2. FP7 Marie Curie IRG
  3. COMSTECH-TWAS grant
  4. TUBITAK-BIDEB fellowship
  5. Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP)

向作者/读者索取更多资源

A general drawback of supramolecular peptide networks is their weak mechanical properties. In order to overcome a similar challenge, mussels have adapted to a pH-dependent iron complexation strategy for adhesion and curing. This strategy also provides successful stiffening and self-healing properties. The present study is inspired by the mussel curing strategy to establish iron cross-link points in self-assembled peptide networks. The impact of peptide-iron complexation on the morphology and secondary structure of the supramolecular nanofibers is characterized by scanning electron microscopy, circular dichroism and Fourier transform infrared spectroscopy. Mechanical properties of the cross-linked network are probed by small angle oscillatory rheology and nanoindentation by atomic force microscopy. It is shown that iron complexation has no influence on self-assembly and beta-sheet-driven elongation of the nanofibers. On the other hand, the organic-inorganic hybrid network of iron cross-linked nanofibers demonstrates strong mechanical properties comparable to that of covalently cross-linked network. Strikingly, iron cross-linking does not inhibit intrinsic reversibility of supramolecular peptide polymers into disassembled building blocks and the self-healing ability upon high shear load. The strategy described here could be extended to improve mechanical properties of a wide range of supramolecular polymer networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据