4.8 Article

Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium-Ion Batteries

向作者/读者索取更多资源

Multi-walled carbon nanotube (MWCNT)/silicon nanocomposites obtained by a grafting technique using the diazonium chemistry are used to prepare silicon negative electrodes for lithium-ion batteries. The covalent bonding of the two compounds is obtained via mono-and multi-layers of phenyl bridges, leading to an ideal dispersion of MWCNTs and silicon nanoparticles that are bound together. The presence of MWCNTs close to silicon nanoparticles enhances the electronic pathway to the active material particles and probably helps to prevent silicon decrepitation upon repeated lithium insertion/extraction by improving the mechanical stability of the electrode at a nanoscale level. This effect results in the enhancement of cycling ability and capacity, which are demonstrated by comparing the nanocomposite electrode to a simple mixture of the two compounds. This technique can be applied to other carbon conductive additives together with silicon or other nanosized active compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据