4.8 Article

A Multifuntional Nanoplatform Based on Responsive Fluorescent Plasmonic ZnO-Au@PEG Hybrid Nanogels

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 21, 期 15, 页码 2830-2839

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201100201

关键词

-

资金

  1. US Agency for International Development [PGA-P280422]

向作者/读者索取更多资源

Under a rational design, combining multiple constituents into a single nano-object will not only bridge the unique properties of individual materials to leverage research both fundamentally and practically, but will also improve conventional sensing, imaging, and therapeutic efficacies. Such a nano-object (<100 nm) can be constructed by covalently bonding ZnO quantum dots (QDs) to nonlinear poly(ethylene glycol)-based nanogel network chains, followed by appropriate growth of metallic Au. With the polymer gel network serving as a three-dimensional scaffold, the fluorescence of ZnO QDs can be well protected, while metal Au still retains its surface plasmon resonance property. The ZnO QDs covalently bonded to the thermo-responsive gel network chains can sensitively respond to temperature change of the surrounding fluids over the physiologically important range of 37-42 degrees C, converting the disruptions in homeostasis of local temperature into stable, robust and high-resolution fluorescent signals. The thermoresponsive hybrid nanogels can not only enter into and light up B16F10 cells, but also regulate the release of a model anticancer drug, temozolomide, in response to either local environmental temperature change or external near-infrared light-induced localized hyperthermia from metal Au. The combined chemo-photothermal therapy can significantly improve the therapeutic efficacy due to a synergistic effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据