4.8 Article

Graphene Solution-Gated Field-Effect Transistor Array for Sensing Applications

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 20, 期 18, 页码 3117-3124

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201000724

关键词

-

资金

  1. Nanosystems Initiative Munich (NIM)
  2. International Graduate School of Science and Engineering (IGSSE) of the Technische Universitat Munchen
  3. German Excellence initiative
  4. EU [FP6-NMP-2006-676033345]
  5. Elitenetzwerk Bayern (Complnt, Material Science of Complex Interfaces)

向作者/读者索取更多资源

Graphene, with its unique combination of physical and electronic properties, holds great promise for biosensor and bioelectronic applications. In this respect, the development of graphene solution-gated field-effect transistor (SGFET) arrays capable of operation in aqueous environments will establish the real potential of graphene in this rapidly emerging field. Here, we report on a facile route for the scalable fabrication of such graphene transistor arrays and provide a comprehensive characterization of their operation in aqueous electrolytes. An on-chip structure for Hall-effect measurements allows the direct determination of charge carrier concentrations and mobilities under electrolyte gate control. The effect of the solution-gate potential on the electronic properties of graphene is explained using a model that considers the microscopic structure of water at the graphene/electrolyte interface. The graphene SGFETs exhibit a high transconductance and correspondingly high sensitivity, together with an effective gate noise as low as tens of mu V. Our study demonstrates that graphene SGFETs, with their facile technology, high transconductance, and low noise promise to far outperform state-of-the-art Si-based devices for biosensor and bioelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据