4.8 Article

High-Efficiency Organic Solar Cells Based on Preformed Poly(3-hexylthiophene) Nanowires

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 21, 期 3, 页码 480-486

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201000971

关键词

-

资金

  1. National Research Foundation of Korea [2009-0093485]
  2. Korea Ministry of Knowledge Economy [20093020010040]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [20093020010040] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  4. National Research Foundation of Korea [2009-0093485] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Bulk heterojunction solar cells based on blends of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PC61BM) are fabricated using self-assembled P3HT nanowires in a marginal solvent without post-treatments. The interconnected network structures of self-organized P3HT nanowires create continuous percolation pathways through the active layer and contribute to enhanced carrier mobility. The morphology and photovoltaic properties are studied as a function of ageing time of the P3HT precursor solution. Optimal photovoltaic properties are found at 60 h ageing time, which increases both light absorption and charge balance. Multilayered solar cells with a compositionally graded structure are fabriacted using preformed P3HT nanowires by inserting a pure P3HT donor phase onto the hole-collecting electrode. Applying optimized annealing conditions to the P3HT buffer layer achieves an enhanced hole mobility and a power conversion efficiency of 3.94%. The introduction of a compositionally graded device structure, which contains a P3HT-only region, reduces charge recombination and electron injection to the indium tin oxide (ITO) electrode and enhances the device properties. These results demonstrate that preformed semiconductor nanowires and compositionally graded structures constitute a promising approach to the control of bulk heterojunction morphology and charge-carrier mobility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据