4.8 Article

Effect of the Ionic Conductivity on the Performance of Polyelectrolyte-Based Supercapacitors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 20, 期 24, 页码 4344-4350

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201001096

关键词

-

资金

  1. Brains and Bricks
  2. SSF
  3. KAW
  4. Onnesjostiftelsen
  5. VINNOVA

向作者/读者索取更多资源

In the emerging technology field of printed electronics, circuits are envisioned to be powered with printed energy sources, such as printed batteries and printed supercapacitors (SCs). For manufacturing and reliability issues, solid electrolytes are preferred instead of liquid electrolytes. Here, a solid-state, polyanionic proton conducting electrolyte, poly(styrenesulfonic acid) (PSS:H), is demonstrated for the first time as an effective ion conducting electrolyte medium in SCs with electrodes based on carbon nanotube (CNT) networks. The effect of the ionic conductivity in the PSS:H film of those SCs is studied at different levels of relative humidity (RH) with impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge techniques. High capacitance values (85 F g(-1) at 80% RH) are obtained for these SCs due to the extremely high effective electrode area of the CNTs and the enhanced ionic conductivity of the PSS: H film at increasing RH level. The charging dynamics are primarily limited by the ionic conductivity of the electrolyte rather than a poor contact between the electrolyte and the CNT electrodes. The use of polyelectrolytes in SCs provides high mechanical strength and flexibility, while maintaining a high capacitance value, enabling a new generation of printable solid-state charge storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据