4.8 Article

Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low-Bandgap Dithiophene Polymers with Different Bridging Atoms

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 20, 期 7, 页码 1180-1188

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200900931

关键词

-

资金

  1. Solar America Initiative/Department of Energy
  2. European Community

向作者/读者索取更多资源

Carbon bridged (C-PCPDTBT) and silicon-bridged (Si-PCPDTBT) dithiophene donor acceptor copolymers belong to a promising class of low bandgap materials. Their higher field-effect mobility, as high as 10(-2)cm(2) V(-1)s(-1) in pristine films, and their more balanced charge transport in blends with fullerenes make silicon-bridged materials better candidates for use in photovoltaic devices. Striking morphological changes are observed in polymer:fullerene bulk heterojunctions upon the substitution of the bridging atom. XRD investigation indicates increased pi-pi stacking in Si-PCPDTBT compared to the carbon-bridged analogue. The fluorescence of this polymer and that of its counterpart C-PC PDTBT indicates that the higher photogeneration achieved in Si-PCPDTBT:fullerene films (with either [C60]PCBM or [C70]PCBM) can be correlated to the inactivation of a charge-transfer complex and to a favorable length of the donor acceptor phase separation. TEM studies of Si-PCPDTBT:fullerene blended films suggest the formation of an interpenetrating network whose phase distribution is comparable to the one achieved in C-PCPDTBT:fullerene using 1,8-octanedithiol as an additive. In order to achieve a balanced hole and electron transport, Si-PCPDTBT requires a lower fullerene content (between 50 to 60 wt%) than C-PCPDTBT (more than 70 wt%). The Si-PCPDTBT:[C70]PCBM OBHJ solar cells deliver power conversion efficiencies of over 5%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据