4.8 Article

Highly Conductive Redox Protein-Carbon Nanotube Complex for Biosensing Applications

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 21, 期 1, 页码 153-157

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201001650

关键词

-

资金

  1. Junta de Comunidades de Castilla-La Mancha (Spain)

向作者/读者索取更多资源

The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single-walled carbon nanotubes (SWNTs) have been introduced as efficient electrical wires to connect biomolecules to metal electrodes in advanced nano-biodevices. Besides preserving biofunctionality, the protein-nanotube connection should ensure appropriate molecular orientation, flexibility, and efficient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying-down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide-terminated functional chains attached to the carbon nanotubes. A single-molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed I-V characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more efficient and reproducible than for proteins directly connected with metal surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据