4.8 Article

Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers

向作者/读者索取更多资源

Ultra-broadband luminescent sources that emit light over an extremely wide wavelength range are of great interest in the fields of photonics, medical treatment, and precision measurement. Extensive research has been conducted on materials doped with rare-earth and transition-metal ions, but the goal of fabricating an ultra-broadband emitter has not been attained. We present a facile method to realize this kind of novel light source by stabilizing active centers (bismuth) in a tolerant host (nanoporous silica glass). The obtained highly transparent materials, in which, unusually, multiple bismuth centers (Bi+, Bi2+, and Bi3+) can be stabilized, emit in an ultra-broadband wavelength range from blue-green, orange, red, and white to the near-infrared region. This tunable luminescence covers the spectral range of the traditional three primary colors (RGB) and also the telecommunications windows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据