4.8 Article

Controllable Soluble Protein Concentration Gradients in Hydrogel Networks

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 18, 期 21, 页码 3410-3417

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200800218

关键词

-

资金

  1. National Institutes of Health [R21EB005374]
  2. National Science Foundation [0745563]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [0745563] Funding Source: National Science Foundation

向作者/读者索取更多资源

Here, controlled formation of sustained, soluble protein concentration gradients within hydrated polymer networks is reported. The approach involves spatially localizing proteins or biodegradable, protein-loaded microspheres within hydrogels to form a protein-releasing depot. Soluble protein concentration gradients are then formed as the released protein diffuses away from the localized source. Control over key gradient parameters, including maximum concentration, gradient magnitude, slope, and time dynamics, is achieved by controlling the release of protein from the depot and subsequent transport through the hydrogel. Results demonstrate a direct relationship between the amount of protein released from the depot and the source concentration, gradient magnitude, and slope of the concentration gradient. In addition, an inverse relationship exists between the diffusion coefficient of protein within the hydrogel and the slope of the concentration gradient. The time dynamics of the concentration gradient profile can be directly correlated to protein release from the localized source, providing a mechanism for temporarily controlling gradient characteristics. Therefore, each key biologically relevant parameter associated with the protein concentration gradient can be controlled by defining protein release and diffusion. It is anticipated that the resulting materials may be useful in 3D cell culture systems, and in emerging tissue engineering approaches that aim to regenerate complex, functional tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据