4.7 Review

Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems

期刊

ADVANCED DRUG DELIVERY REVIEWS
卷 132, 期 -, 页码 81-103

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addr.2018.07.013

关键词

Drug delivery system; Drug transport; Cancer; Mathematical modelling

向作者/读者索取更多资源

Drug delivery to solid tumour involves multiple physiological, biochemical and biophysical processes taking place across a wide range of length and time scales. The therapeutic efficacy of anticancer drugs is influenced by the complex interplays among the intrinsic properties of tumours, biophysical aspects of drug transport and cellular uptake. Mathematical and computational modelling allows for a well-controlled study on the individual and combined effects of a wide range of parameters on drug transport and therapeutic efficacy, which would not be possible or economically viable through experimental means. A wide spectrum of mathematical models has been developed for the simulation of drug transport and delivery in solid tumours, including PK/PD-based compartmental models, microscopic and macroscopic transport models, and molecular dynamics drug loading and release models. These models have been used as a tool to identify the limiting factors and for optimal design of efficient drug delivery systems. This article gives an overview of the currently available computational models for drug transport in solid tumours, together with their applications to novel drug delivery systems, such as nano particle-mediated drug delivery and convection-enhanced delivery. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据