4.3 Article

High temperature fiber fragmentation characteristics of SiC single-fiber composite with titanium matrices

期刊

ADVANCED COMPOSITE MATERIALS
卷 17, 期 1, 页码 75-87

出版社

VSP BV
DOI: 10.1163/156855108X295663

关键词

titanium; metal matrix composites; fiber-matrix interface; fiber fragmentation

向作者/读者索取更多资源

Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber-matrix interface at operating temperatures is therefore essential for the development of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at 650 degrees C of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber-matrix interface and the resulting fragmentation of the fiber. (C) Koninklijke Brill NV, Leiden, 2008.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据